1 Introduction

Thank you for selecting the MOONS’ SR3-mini step motor drive. We hope our commitment to performance, quality and economy will make a successful motion control project.

1.1 Overview

The SR3-mini Step motor drive is a cost-effective, high performance drive. The design is based on advanced digital current control technology, and features high torque, low noise and low vibration. Running current, microstep resolution, and other parameters are switch selectable so software configuration is not required.

1.2 Features

- Power Supply - Operates from a 12 to 48 volt DC power supply
- Inputs - 3 optically isolated digital inputs, 5 to 24 volts
- Speed Range - up to 3000 rpm
- Current Control - 3 piano switch setting running current, 3 amps peak maximum
- Idle Current - Switch selectable for reduction to 50% or 90% of running current 1 second after the motor stops
- Self Test - Performs a 2 rev, 1 rps, CW/CCW move test, switch selectable: ON or OFF
- Control Mode - Step & Direction mode, CW/CCW mode
- Microstep Resolution - 4 piano Switch selectable, 16 settings: 200, 400, 800, 1600, 3200, 6400, 12800, 25600, 1000, 2000, 4000, 5000, 6000, 8000, 10000, 20000 steps/rev
1.3 Block Diagram

SR3-mini
Block Diagram

I/O Configurations
STEP(5-24V): Step Input
DIR(5-24V): Direction Input
EN(5-24V): Enable Input

+12 to 48VDC

DSP Driver Controller

MOSFET
PWM Power Amplifier

Over Current Det.

Status

Input Filter
Control Mode
Smoothing Filter
Self Test

3.3V DC Internal Logic Supply

12-48 VDC External Power Supply

Power Connector

GND

STEP+
STEP-
DIR+
DIR-
EN+
EN-

Optical Iso

Digital Filter

Software Filter

I/O Connector Power Connector

STEP(5-24V): Step Input
DIR(5-24V): Direction Input
EN(5-24V): Enable Input

: CW
: CCW
: Alarm Reset

Voltage Temp Det.
1.4 Safety Instructions

Only qualified personnel should transport, assemble, install, operate, or maintain this equipment. Properly qualified personnel are persons who are familiar with the transport, assembly, installation, operation, and maintenance of motors, and who meet the appropriate qualifications for their jobs.

To minimize the risk of potential safety problems, all applicable local and national codes regulating the installation and operation of equipment should be followed. These codes may vary from area to area and it is the responsibility of the operating personnel to determine which codes should be followed, and to verify that the equipment, installation, and operation are in compliance with the latest revision of these codes.

Equipment damage or serious injury to personnel can result from the failure to follow all applicable codes and standards. MOONS’ does not guarantee the products described in this publication are suitable for a particular application, nor do they assume any responsibility for product design, installation, or operation.

- Read all available documentation before assembly and operation. Incorrect handling of the products referenced in this manual can result in injury and damage to persons and machinery. All technical information concerning the installation requirements must be strictly adhered to.
- It is vital to ensure that all system components are connected to earth ground. Electrical safety is impossible without a low-resistance earth connection.
- This product contains electrostatically sensitive components that can be damaged by incorrect handling. Follow qualified anti-static procedures before touching the product.
- During operation keep all covers and cabinet doors shut to avoid any hazards that could possibly cause severe damage to the product or personal health.
- During operation the product may have components that are live or have hot surfaces.
- Never plug in or unplug the step motor drive while the system is live. The possibility of electric arcing can cause damage.

Be alert to the potential for personal injury. Follow all recommended precautions and safe operating practices. Safety notices in this manual provide important information. Read and be familiar with these instructions before attempting installation, operation, or maintenance. The purpose of this section is to alert users to the possible safety hazards associated with this equipment and the precautions necessary to reduce the risk of personal injury and damage to equipment. Failure to observe these precautions could result in serious bodily injury, damage to the equipment, or operational difficulty.
2 Getting Started

To use the SR3-mini step motor drive, the following items are needed:

- A 12 - 48 volt DC power supply, see the section below entitled “Choosing a Power Supply” for help in choosing the right one
- Step & Direction signals
- A small flat blade screwdriver for configuring the switches (included)

2.1 Mounting Hardware

As with any step motor, the SR3-mini must be mounted so as to provide maximum heat sinking and airflow. Keep enough space around the Step motor drive to allow for airflow.

- Never use the drive where there is no airflow or where other devices cause the surrounding air to be more than 40°C (104°F).
- Never put the drive where it can get wet.
- Never use the drive where metal or other electrically conductive particles can infiltrate the drive.
- Always provide airflow around the drive.
2.2 Choosing a Power Supply

The main considerations when choosing a power supply are the voltage and current requirements for the application.

2.2.1 Voltage Selection

The SR3-mini is designed to give optimum performance between 12 and 48 volts DC. Choosing the voltage depends on the performance needed and motor/drive heating that is acceptable and/or does not cause a drive over-temperature. Higher voltages will give higher speed performance but will cause the SR3-mini to produce higher temperatures. Using power supplies with voltage outputs that are near the drive maximum may significantly reduce the operational duty-cycle.

The extended range of operation can be as low as 10 VDC minimum to as high as 53 VDC maximum. When operating below 12 VDC, the power supply input may require larger capacitance to prevent under-voltage and internal-supply alarms. Current spikes may make supply readings erratic. The supply input cannot go below 12 VDC for reliable operation. Absolute minimum power supply input is 10 VDC. If the Input supply drops below 10 VDC the low voltage alarm will be triggered. This will not fault the drive.

Absolute maximum power supply input is 53 VDC at which point an over-voltage alarm and fault will occur. When using a power supply that is regulated and is near the drive maximum voltage of 53 VDC, a voltage clamp may be required to prevent over-voltage when regeneration occurs. The RC880 Regeneration Clamp is recommended for the SR3-mini in this situation (see 3.1 “Connecting the Power Supply” below). When using an unregulated power supply, make sure the no-load voltage of the supply does not exceed the drive’s maximum input voltage of 53 VDC.

The charts below show the heat output, in watts, of the drive at various speeds and voltages. See section 6.4 on Drive/Motor Heating for more information.
SR3-mini Motor 23HS2449-01 Wattage VS Speed
2.25 amps @ ambient of 40°C
200x200x5(mm) Aluminum Plate

Power Supply (Watts) vs Speed (RPS)
2.2.2 Current

The maximum supply currents required by the SR3-mini are shown in the charts below at different power supply voltage inputs. The SR3-mini power supply current is lower than the winding currents because it uses switching amplifiers to convert a high voltage and low current into lower voltage and higher current. The more the power supply voltage exceeds the motor voltage, the less current will be required from the power supply.

It is important to note that the current draw is significantly different at higher speeds depending on the torque load to the motor. Estimating how much current is necessary may require a good analysis of the load the motor will encounter.
SR3-mini Motor 17HD6426-06N Power Supply Current
(Supply Voltage 48V, Drive Current 1.65A)

SR3-mini Motor 23HS2449-01 Power Supply Current
(Supply Voltage 12V, Drive Current 2.25A)

SR3-mini Motor 23HS2449-01 Power Supply Current
(Supply Voltage 24V, Drive Current 2.25A)
SR3-mini Motor 23HS2449-01 Power Supply Current
(Supply Voltage 48V, Drive Current 2.25A)

- Torque Curves
- Supply Current (Full Load)
- Supply Current (No Load)
3 Connections

3.1 Connecting the Power Supply

If the power supply does not have a fuse on the output or some kind of short circuit current limiting device a fast acting fuse is required. A 3 amp fast acting fuse should be installed in line with the “+” power supply lead.

Connect the power supply “+” terminal to the drive “V+” terminal. Connect the power supply “-” terminal to the drive “V-” terminal.

Be careful not to reverse the wires. Reversing the connection may open the internal fuse and void the warranty.

If a regulated power supply is being used, there may be a problem with regeneration. When a load decelerates rapidly from a high speed, some of the kinetic energy of the load is transferred back to the power supply, possibly tripping the over-voltage protection of a regulated power supply, causing it to shut down. This problem can be solved with the use of a MOONS’ RC880 Regeneration Clamp. It is recommended that an RC880 initially be installed in an application. If the “regen” LED on the RC880 never flashes, the clamp is not necessary.
3.2 Connecting the Inputs & Outputs

3.2.1 Connector Pin Diagram

3.2.2 STEP & DIR Inputs

The SR3-mini step motor drive has two high speed optically isolated inputs called STEP and DIR. They accept 5 to 24 volt single-ended or differential signals, up to 500KHz. The maximum voltage that can be applied to the input is 28V.

The motor executes one step when the STEP input closes.

The direction of rotation is controlled by the DIR input state. A closed input (logic “0”) will result in clockwise rotation, and an open input (logic “1”) will result in counterclockwise rotation.

Connecting to Indexer with Sinking Outputs

Connecting to Indexer with Sourcing Outputs

Connecting to Indexer with Differential Outputs

Many high-speed indexers have differential outputs.
3.2.3 EN Input

The EN input enables or disables the drive amplifier. It is an optically isolated input that accepts a 5 to 24 volt single-ended or differential signal. The maximum voltage that can be applied to the input is 28V.

When EN input is closed, the drive amplifier is deactivated. All the MOSFETs will shutdown, and the motor is free. When EN input is open, the drive is activated.

When the drive has encountered an error and the fault is removed from system, a falling signal into the EN input will reset the error status and activate the drive amplifier again.

![Diagram of EN Input](image)

Connecting the Input to a Switch or Relay

![Diagram of NPN Proximity Sensor](image)

Connecting an NPN type Proximity Sensor to an input (when prox sensor activates, input goes low)

![Diagram of PNP Proximity Sensor](image)

Connecting an PNP type Proximity Sensor to an input (when prox sensor activates, input goes low)
4 Switch Selecting

4.1 Running Current

The output current of the SR3-mini step motor drive is set by the SW1, SW2 and SW3 switches and can be changed as necessary. There are 4 settings available according to the ON/OFF combination of the switches.

<table>
<thead>
<tr>
<th>Current (Amps)</th>
<th>SW1</th>
<th>SW2</th>
<th>SW3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>0.8</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>1.2</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>1.6</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>2.0</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>2.4</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>2.7</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>3.0</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Current Setting

<table>
<thead>
<tr>
<th>OFF</th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

SR3-mini User Manual

15

Rev. 1.0
6/9/2015
4.2 Idle Current

The running current of the SR3-mini is automatically reduced whenever the motor isn't moving. Setting the SW4 switch to ON maintains 50% of the running current. Setting this switch to OFF maintains 90% of the running current. This 90% setting is useful when a high holding torque is required. To minimize motor and drive heating it is highly recommended that the idle current reduction feature be set to 50% unless the application requires the higher setting.

4.3 Microstep Setting

SR3-mini setting switch SW5, SW6, SW7, SW8. There are 16 settings.

<table>
<thead>
<tr>
<th>Steps/Rev</th>
<th>SW5</th>
<th>SW6</th>
<th>SW7</th>
<th>SW8</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>400</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>800</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>1600</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>3200</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>6400</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>12800</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>25600</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>1000</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>2000</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>4000</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>5000</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>6000</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>8000</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>10000</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>20000</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>
4.4 Self Test
A built-in self-test feature is available on the SR3-mini to check the physical operation of the motor. Setting switch SW9 to ON after the drive is powered up will cause the drive to perform a self test move of 2 revolutions both CW and CCW at 1rps. Setting switch SW9 to OFF disables this feature.

4.5 Step Smoothing Filter
Command signal smoothing can soften the effect of immediate changes in velocity and direction, making the motion of the motor less jerky. An added advantage is that it can reduce the wear on mechanical components. SW10 selects this function - ON enables it, OFF disables it.

This function can cause a small delay in following the control signal, and it should be used with that in mind.

4.6 Control Mode
Switch SW11 sets control mode. Switch OFF sets the Step & Dir mode. Switch ON sets the CW/CCW mode.

4.7 Step Noise Filter
Switch SW12 sets the digital signal filter. The STEP and DIR signal inputs have built-in digital filters and this setting will reduce external noise. If the system works on the low microstep, select the 150 KHz (ON) setting. If the system works on the high microstep, select the 500KHz (OFF) setting.
4.8 Motor Selection

Motor wires setting:

![Motor wires diagram](image-url)
5 Troubleshooting

LED Error Codes

The SR3-mini has one bicolor (red/green) LED to indicate status and errors. When the motor is enabled, the LED slowly flashes green. When the LED is solid green, the motor is disabled. If the LED flashes red, an error has occurred. Errors are indicated by a combination of red and green flashes as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Motor Disabled</td>
</tr>
<tr>
<td></td>
<td>Motor Enabled</td>
</tr>
<tr>
<td></td>
<td>Over Temperature</td>
</tr>
<tr>
<td></td>
<td>Bad Internal Voltage</td>
</tr>
<tr>
<td></td>
<td>Power Supply Over Voltage</td>
</tr>
<tr>
<td></td>
<td>Power Supply Under Voltage</td>
</tr>
<tr>
<td></td>
<td>Over Current/Short Circuit</td>
</tr>
<tr>
<td></td>
<td>Open Widing</td>
</tr>
</tbody>
</table>
6 Reference Materials

6.1 Mechanical Outline

![Mechanical Outline Diagram]
6.2 Technical Specifications

Power Amplifier

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifier Type</td>
<td>Dual H-Bridge, 4 Quadrant</td>
</tr>
<tr>
<td>Current Control</td>
<td>4 state PWM at 16 KHz</td>
</tr>
<tr>
<td>Power Supply</td>
<td>External 12 - 48 volt power supply required</td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>10 - 53 volts min/max (nominal 12 - 48 volts), voltages outside this range will cause driver faults and/or may damage the drive</td>
</tr>
<tr>
<td>Protection</td>
<td>Over-voltage, over-current, under-voltage, over-temp, internal motor shorts (phase-to-phase, phase-to-ground)</td>
</tr>
<tr>
<td>Ambient Temperature</td>
<td>0 - 40°C (32 - 104°F) when mounted to a suitable heatsink</td>
</tr>
<tr>
<td>Humidity</td>
<td>90% non-condensing</td>
</tr>
</tbody>
</table>

Controller

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Control</td>
<td>Advanced digital current control provides excellent high speed torque</td>
</tr>
<tr>
<td>Speed Range</td>
<td>Speeds up to 3000 rpm</td>
</tr>
<tr>
<td>Auto Setup</td>
<td>Measures motor parameters to configure current control and anti-resonance gain settings</td>
</tr>
<tr>
<td>Step Input STEP+/−</td>
<td>Inputs: optically isolated, 5 - 24 volts, min. pulse width 250 us., max. pulse frequency 500KHz; motor executes one step when the STEP input closes</td>
</tr>
<tr>
<td>Direction Input DIR+/−</td>
<td>Inputs: optically isolated, 5 - 24 volts, min. pulse width 62.5 us., max. pulse frequency 500KHz; direction of rotation is controlled by the DIR input state</td>
</tr>
<tr>
<td>Enable Input EN+/−</td>
<td>Inputs: optically isolated, 5 - 24 volts, min. pulse width 500 us., max. pulse frequency 10 KHz; enables or disables the drive amplifier</td>
</tr>
<tr>
<td>Running Current</td>
<td>Switch selectable, 8 settings: 3 amps peak maximum</td>
</tr>
<tr>
<td>Idle Current Reduction</td>
<td>Automatically reduces the current 1 second after the motor stops; switch selectable, 2 settings: 50% or 90% of the running current</td>
</tr>
<tr>
<td>Microstep Resolution</td>
<td>Switch selectable, 16 settings: 200, 400, 800, 1600, 3200, 6400, 12800, 25600 1000, 2000, 4000, 5000, 6000, 8000, 10000, 20000 steps/rev</td>
</tr>
<tr>
<td>Self Test</td>
<td>Checks internal and external power supply voltages, 2 rev move both CW and CCW at 1rps, switch selectable, ON or OFF</td>
</tr>
<tr>
<td>Modes Of Control</td>
<td>Step & Direction, CW/CCW</td>
</tr>
</tbody>
</table>
6.3 Torque Curves

17HD6426-06N
Drive: SR3-mini
Microstep: 20000 step/rev
Current: 1.65A (Peak)

23HS2449-01
Drive: SR3-mini
Microstep: 20000 step/rev
Current: 2.25A (Peak)

Note: all torque curves were measured at 20,000 steps/rev.
6.4 Drive/Motor Heating

Step motors convert electrical power from the driver into mechanical power to move a load. Because step motors are not 100% efficient, some of the electrical power turns into heat as it passes through the motor. The amount of heating is not so much dependent on the load being driven as on the motor speed and power supply voltage. There are certain combinations of speed and voltage at which a motor cannot be continuously operated without damage occurring to the motor.

A step motor typically reaches its maximum temperature after 30 to 45 minutes of operation. A motor that runs for one minute and then rests for one minute is said to have a duty cycle of 50%. Five minutes of running and five minutes of rest is also a 50% duty cycle. However, one hour of running and one hour of rest has the effect of 100% duty cycle as the motor will reach full and possible excessive temperature during the first hour. The actual temperature of the motor depends on how much heat is conducted, convected or radiated out of it.

The curves below result from measurements made in a 40°C (104°F) environment with the motor mounted to an aluminum plate sized to provide a surface area consistent with the motor power dissipation. Results may vary.
7 Contacting MOONS’

Service Center
+86-400-820-9661

■ Headquarters
 No. 168 Mingjia Road Industrial Park North Minhang District Shanghai 201107, P.R. China
 Tel: +86(0)21-52634688
 Fax: +86(0)21-62968482
 E-mail: info@moons.com.cn

■ MOONS’ Industries (America), Inc.
 1113 North Prospect Avenue, Itasca, IL 60143 U.S.A.
 Tel: 001-630-833-5940
 Fax: 001-630-833-5946

■ MOONS’ Industries (Europe) S.r.l.
 Via Torri Bianche n.1 20059 Vimercate(MB) Italy
 Tel: +39 039 62 60 521
 Fax: +39 039 96 31 409

■ MOONS’ Industries (South-East Asia) Pte Ltd.
 33 Ubi Avenue 3 #08-23 Vertex Singapore 408668
 Tel: +65 6634 1198
 Fax: +65 6634 1138

■ Shenzhen Branch Office
 Room 2209, 22/F, Kerry Center, No. 2008 Renminnan Road Shenzhen 518001 P. R.China
 Tel: +86 (0)755 25472080
 Fax: +86 (0)755 25472081

■ Beijing Branch Office
 Room 202, Unit 2, 7th Building, Huilongsen International Science & Technology Industry Park,
 No.99, Kechuang 14th Street, Beijing 101111 P. R.China
 Tel: +86 (0)10 59755578
 Fax: +86 (0)10 59755579

■ Qingdao Branch Office
 Room 10E, No.73 Wangjiao Mansion, mid. Hongkong Road Qingdao 266071 P. R.China
 Tel: +86 (0)532 85879625
 Fax: +86 (0)532 85879512

■ Wuhan Branch Office
 Room 3001, World Trade Tower, No.686 Jiefang Avenue, Jianghan District, Wuhan 430022 P.R.China
 Tel: +86 (0)27-85448742
 Fax: +86 (0)27-85448355

■ Nanjing Branch Office
 Room 302, Building A, Tengfei Creation Center, 55 Jiangjun Avenue, Jiangning District, Nanjing 211100 P. R.China
 Tel: +86 (0)25 52785841
 Fax: +86 (0)25 52785485

■ Chengdu Branch Office
 Room 1917, Western Tower, No.19, 4th Section of South People Road, Wuhou District, Chengdu 610041 P.R.China
 Tel: +86 (0)28-85268102
 Fax: +86 (0)28-85268103